On Multiple Eigenvalues of Selfadjoint Compact Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for the eigenvalues of non-selfadjoint Jacobi operators

We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.

متن کامل

The Horn Conjecture for Sums of Compact Selfadjoint Operators

We determine the possible nonzero eigenvalues of compact selfadjoint operators A, B(1), B(2), . . ., B(m) with the property that A = B(1) +B(2) +· · ·+B(m). When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn’s inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and ...

متن کامل

Variational Principles for Eigenvalues of Compact Nonselfadjoint Operators

Let T be a linear compact operator on a Hilbert space H, Aj be its eigenvalues, IA,1 > /& > ,..., rj be the moduli of the real parts of the eigenvalues ordered so that r, > r2 .... Note that rj is not necessarily equal to 1 Re ;ljj. Let Lj be the eigensubspace of T corresponding to Aj, yj be the eigensubspace of T corresponding to rj, zj = Cjk,, i L,, aj = xi=, -k Mk. Let tj be the moduli of th...

متن کامل

Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators

Transmission eigenvalues are points in the spectrum of the interior transmission operator, a coupled 2x2 system of elliptic partial differential equations, where one unknown function must satisfy two boundary conditions and the other must satisfy none. We show that the interior transmission eigenvalues are discrete and depend continuously on the contrast by proving that the interior transmissio...

متن کامل

Number of Eigenvalues for a Class of Non-selfadjoint Schrödinger Operators

In this article, we prove the finiteness of the number of eigenvalues for a class of Schrödinger operators H = −∆ + V (x) with a complex-valued potential V (x) on R, n ≥ 2. If IV is sufficiently small, IV ≤ 0 and IV 6= 0, we show that N(V ) = N(RV )+k, where k is the multiplicity of the zero resonance of the selfadjoint operator−∆+RV and N(W ) the number of eigenvalues of −∆+W , counted accordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1993

ISSN: 0022-247X

DOI: 10.1006/jmaa.1993.1010